Theranostics2020, 10, 2436–2452. Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. Immunotherapy, a burgeoning field differs from traditional cancer treatments, is revolutionizing oncologic therapeutics. Mater.2019, 31, 1900192. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Mol. Kennedy, L. B.; Salama, A. K. S. A review of cancer immunotherapy toxicity. Chem., Int. J. Front. Nano Lett.2016, 16, 2334–2340. Mol. ACS Nano2019, 13, 12671–12686. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Int. Complex Hydrides for Energy Storage, Conversion, and Utilization. J.2020, 24, 81–88. Ann. Sarkar Bhattacharya, S.; Thirusangu, P.; Jin, L.; Roy, D.; Jung, D.; Xiao, Y. N.; Staub, J.; Roy, B.; Molina, J. R.; Shridhar, V. PFKFB3 inhibition reprograms malignant pleural mesothelioma to nutrient stress-induced macropinocytosis and er stress as independent binary adaptive responses. Nanotechnol.2019, 14, 799–809. Nanotechnol.2019, 14, 269–278. Cell2014, 157, 832–844. Drug Discov.2016, 15, 235–247. Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation Kevin Lin, Lijuan Wang, Kun Luo, Yinpeng Chen, Zicheng Liu, Ming-Ting Sun To appear in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT). Transl. Cancer Res.2015, 75, 5–10. A.; Vadlamani, S.; Vemula, K.; Vunnum, S.; Satyam, L. K.; Samiulla, D. S.; Subbarao, K. et al. The global cancer burden and human development: A review. Sakaguchi, S.; Mikami, N.; Wing, J. Cancer2020, 20, 174–186. Nano Research Biomaterials2020, 232, 119676. USA2010, 107, 20009–20014. A Precious Catalyst: Rhodium‐Catalyzed Formic Acid Dehydrogenation in Water. A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal microRNA. Sung, Y. C.; Jin, P. R.; Chu, L. A.; Hsu, F. F.; Wang, M. R.; Chang, C. C.; Chiou, S. J.; Qiu, J. T.; Gao, D. Y.; Lin, C. C. et al. A.; Strijkers, G. J.; Van Diest, P. J.; Lowik, C. W. G. M.; Seynhaeve, A. L. B.; Ten Hagen, T. L. M.; Prompers, J. J. et al. Stephan, M. T.; Stephan, S. B.; Bak, P.; Chen, J. Release2020, 321, 589–601. Release2015, 208, 59–66. Res.2019, 52, 1543–1554. Science2019, 365, 162–168. Endosomolytic polymersomes increase the activity of cyclic dinucleotide sting agonists to enhance cancer immunotherapy. Nat. Dong, H.; Xu, X.; Wang, L. K.; Mo, R. Advances in living cell-based anticancer therapeutics. Russell, L. M.; Liu, C. H.; Grodzinski, P. Nanomaterials innovation as an enabler for effective cancer interventions. Bhome, R.; Goh, R. W.; Bullock, M. D.; Pillar, N.; Thirdborough, S. M.; Mellone, M.; Mirnezami, R.; Galea, D.; Veselkov, K.; Gu, Q. et al. Endocrinol.2015, 29, 1170–1183. Nat. Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Zhang, J. X.; Mai, J. H.; Li, F.; Shen, J. L.; Zhang, G. D.; Li, J.; Hinkle, L. E.; Lin, D.; Liu, X. W.; Li, Z. et al. Lang, T. Q.; Liu, Y. R.; Zheng, Z.; Ran, W.; Zhai, Y. H.; Yin, Q.; Zhang, P. C.; Li, Y. P. Cocktail strategy based on spatio-temporally controlled nano device improves therapy of breast cancer. J. Med.2018, 379, 2108–2121. Lyophilizable and multifaceted toll-like receptor 7/8 agonist-loaded nanoemulsion for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy. Molecules2019, 24, 2804. Current status and future directions of cancer immunotherapy. Chung, S. J.; Nagaraju, G. P.; Nagalingam, A.; Muniraj, N.; Kuppusamy, P.; Walker, A.; Woo, J.; Györffy, B.; Gabrielson, E.; Saxena, N. K. et al. Rev.2017, 114, 206–221. Diterpenoid Alkaloids from the Lateral Root of Aconitum carmichaelii. Olden, B. R.; Perez, C. R.; Wilson, A. L.; Cardle, I. I.; Lin, Y. S.; Kaehr, B.; Gustafson, J. Advances in engineering local drug delivery systems for cancer immunotherapy. PubMed Google Scholar. Immunol. A.; Netea, M. G. Therapeutic targeting of trained immunity. Ngambenjawong, C.; Gustafson, H. H.; Pun, S. H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Putnam, D. Polymers for gene delivery across length scales. Conde, J.; Bao, C. C.; Tan, Y. Q.; Cui, D. X.; Edelman, E. R.; Azevedo, H. S.; Byrne, H. J.; Artzi, N.; Tian, F. R. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Mater.2019, 31, 1902409. Nature2016, 534, 396–401. ACS Nano2020, 14, 2172–2182. Cell2017, 170, 1120–1133.e17. Katheder, N. S.; Khezri, R.; O’Farrell, F.; Schultz, S. W.; Jain, A.; Rahman, M. M.; Schink, K. O.; Theodossiou, T. A.; Johansen, T.; Juhász, G. et al. Wang, S.; Lin, J.; Wang, Z. T.; Zhou, Z. J.; Bai, R. L.; Lu, N.; Liu, Y. J.; Fu, X.; Jacobson, O.; Fan, W. P. et al. HiPIMS Deposited Ti-Cu Thin Films and Their Antibacterial Activity. Metallo-N-Heterocycles - A New Family of Hydrogen Storage Material. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. B-P-0324. The enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the oxygen electron to the benzene ring in phenoxides. Xie, Y.; Hang, Y.; Wang, Y. Schreiber, R. D.; Old, L. J.; Smyth, M. J. Nanomedicine: Nanotechnol., Biol. Nanotechnol.2017, 12, 648–654. Cancer Ther.2019, 18, 1081–1091. Zhang, C.; Bu, W. B.; Ni, D. L.; Zhang, S. J.; Li, Q.; Yao, Z. W.; Zhang, J. W.; Yao, H. L.; Wang, Z.; Shi, J. L. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Mater.2020, 32, 1907568. Nat. Cell2017, 170, 548–563.e16. Bingya Jiang, Sheng Lin, Chenggen Zhu, Sujuan Wang, Yanan Wang, Minghua Chen, Jianjun Zhang, Jinfeng Hu, Naihong Chen, Yongchun Yang, and Jiangong Shi . Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in globocan 2012. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. 14DZ2261100 and 15DZ1940106), the Fundamental Research Funds for the Central Universities (No. Nat. N. Engl. B. STING: A master regulator in the cancer-immunity cycle. Chem. Tang, J.; Hubbard-Lucey, V. M.; Pearce, L.; O’Donnell-Tormey, J.; Shalabi, A. Microenvironmental autophagy promotes tumour growth. However, low response rate and immune-related adverse effects (irAEs) remain problems during its management. Tavallaie, R.; McCarroll, J.; Le Grand, M.; Ariotti, N.; Schuhmann, W.; Bakker, E.; Tilley, R. D.; Hibbert, D. B.; Kavallaris, M.; Gooding, J. J. Nucleic acid hybridization on an electrically reconfigurable network of gold-coated magnetic nanoparticles enables microrna detection in blood. Biomaterials2017, 148, 16–30. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Wilson, J. T.; Postma, A.; Keller, S.; Convertine, A. J.; Moad, G.; Rizzardo, E.; Meagher, L.; Chiefari, J.; Stayton, P. S. Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles. Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Nat. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Theranostics2019, 9, 7889–7905. Shen Lin was born on October 23, 1980 in Beijing, China. Sci.2020, 8, 1875–1884. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Nature2019, 574, 696–701. B2020, 8, 1396–1404. Yang, Z.; Song, J. Acta Biomater.2018, 66, 310–324. Science2019, 363, eaau0135. Wang, W. Q.; Jin, Y. L.; Xu, Z. Helmy, K. Y.; Patel, S. A.; Nahas, G. R.; Rameshwar, P. Cancer immunotherapy: Accomplishments to date and future promise. Acute cellular and vascular responses to photodynamic therapy using egfr-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging. Theranostics2019, 9, 526–536. Ali, E. S.; Sharker, S. M.; Islam, M. T.; Khan, I. N.; Shaw, S.; Rahman, M. A.; Uddin, S. J.; Shill, M. C.; Rehman, S.; Das, N. et al. Learn more about Institutional subscriptions. Mulder, W. J. M.; Ochando, J.; Joosten, L. A. ACS Nano2020, 14, 2585–2627. Enter your email address below and we will send you your username, If the address matches an existing account you will receive an email with instructions to retrieve your username, By continuing to browse this site, you agree to its use of cookies as described in our, orcid.org/http://orcid.org/0000-0002-0625-0639, I have read and accept the Wiley Online Library Terms and Conditions of Use. Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Chem. Immunity2010, 32, 593–604. DOI: 10.1016/j.molstruc.2011.10.010. Delivery of nitric oxide with a nanocarrier promotes tumour vessel normalization and potentiates anti-cancer therapies. Zhang, S. Q.; Liu, X.; Sun, Q. X.; Johnson, O.; Yang, T.; Chen, M. L.; Wang, J. H.; Chen, W. Cus@PDA-FA nanocomposites: A dual stimuli-responsive DOX delivery vehicle with ultrahigh loading level for synergistic photothermal-chemotherapies on breast cancer. He is an actor, known for Wo di gui lai (2017), Xi Fu De Mei Hao Shi Dai (2010) and Ma La Po Xi (2006). Lee, K.; Kim, M.; Seo, Y.; Lee, H. Development of mRNA vaccines and their prophylactic and therapeutic applications. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. B.; Liu, X. R. et al. Mol. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Gulzar, A.; Xu, J. T.; Yang, D.; Xu, L. G.; He, F.; Gai, S. L.; Yang, P. P. Nano-graphene oxide-ucnp-ce6 covalently constructed nanocomposites for nir-mediated bioimaging and ptt/pdt combinatorial therapy. The experimental results demonstrate that sodium phenoxide–cyclohexanolate, an air‐ and water‐stable pair, can desorb hydrogen at ca. Sci.2018, 39, 59–74. It aims to stimulate the innate and adaptive immune system of a patient to fight against tumor cells. J. Nanomedicine2019, 14, 2465–2483. Tsai, S. J.; Andorko, J. I.; Zeng, X. Li, W.; Zhao, X. X.; Du, B.; Li, X.; Liu, S. H.; Yang, X. Y.; Ding, H.; Yang, W. D.; Pan, F.; Wu, X. Yang Yu, Qijun Pei, Teng He, Ping Chen, Kinetic studies of reversible hydrogen storage over sodium phenoxide-cyclohexanolate pair in aqueous solution, Journal of Energy Chemistry, 10.1016/j.jechem.2019.04.008, (2019). Sci. “Efficient Non-Doped Blue Light Emitting Diodes Based on Novel Carbazole-Substituted Anthracene Derivatives”. Motz, G. T.; Coukos, G. Deciphering and reversing tumor immune suppression. Healthc. Palucka, K.; Banchereau, J. 032. Hu, X. C.; Lu, Y. L.; Dong, C. Y.; Zhao, W. R.; Wu, X. W.; Zhou, L. L.; Chen, L.; Yao, T. M.; Shi, S. A RuII polypyridyl alkyne complex based metal-organic frameworks for combined photodynamic/photothermal/chemotherapy. Adv. Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. Mater.2019, 31, 1806202. Nanomedicine. Torre, L. A.; Bray, F.; Siegel, R. L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Oncol.2013, 24, 1740–1748. Learn about our remote access options, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China, University of Chinese Academy of Sciences, Beijing, 100049 China, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China, Pacific Northwest National Laboratory, Richland, WA, 99352 USA, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM⋅2011), Xiamen University, Fujian, 361005 China, Dedicated to the Dalian Institute of Chemical Physics, Chinese Academy of Sciences on the occasion of its 70th anniversary. Yatsunyk, L. A.; Mendoza, O.; Mergny, J. L. “Nano-oddities”: Unusual nucleic acid assemblies for DNA-based nanostructures and nanodevices. Nanotechnol.2019, 14, 1007–1017. Shi, J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. A. et al. Zhou, J. R.; Kroll, A. V.; Holay, M.; Fang, R. H.; Zhang, L. F. Biomimetic nanotechnology toward personalized vaccines. Chem. Stimuli-responsive nanotheranostics for real-time monitoring drug release by photoacoustic imaging. ACS Nano2019, 13, 3083–3094. Cheung, A. S.; Zhang, D. K. Y.; Koshy, S. T.; Mooney, D. J. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Immunol. Neutron activated 153Sm sealed in carbon nanocapsules for in vivo imaging and tumor radiotherapy. © 2020 Springer Nature Switzerland AG. Rev. Papers in 2013 “Pulsed Nanogenerator with Huge Instantaneous Output Power Density"Gang Cheng, Zong-Hong Lin, Long Lin, Zu-liang Du, and Zhong Lin Wang, ACS NANO, 2013, 7, 8, 7383-7391 “Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System"Ya Yang, Hulin Zhang, Jun Chen, Qingshen Jing, Yu Sheng Zhou, Xiaonan Wen, and Zhong Lin … Natl. Gao, S. Q.; Li, T. Y.; Guo, Y.; Sun, C. X.; Xianyu, B. R.; Xu, H. P. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Control. J. Chem.2019, 7, 764. Simultaneous fenton-like ion delivery and glutathione depletion by Mno2-based nanoagent to enhance chemodynamic therapy. Systemic rna delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nat. B.; Tanaka, A.; Ichiyama, K.; Ohkura, N. Regulatory T cells and human disease. Chem., Int. Deliv.2013, 4, 1307–1320. Yu Ren Chen, Chen Pi, Yu Ting Wu, Ching Wei Chang, Jai Lin Tsai. Vaccines2015, 14, 1529–1541. Kubik, T.; Bogunia-Kubik, K.; Sugisaka, M. Nanotechnology on duty in medical applications. Kalaydina, R. V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M. R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Commun.2005, 338, 12–19. Lett.2018, 196, 11–21. Mater.2018, 7, 1800424. Med.2015, 7, 291ra94. Rev. Chem. https://doi.org/10.1007/s12274-020-2904-8, DOI: https://doi.org/10.1007/s12274-020-2904-8, Over 10 million scientific documents at your fingertips, Not logged in Radiology2019, 290, 9–22. Google Scholar. C 2020,8, 4851-4858.. Shu-Chi Wu, Yuanfei Ai, Yu-Ze Chen, Kuangye Wang, Tzu-Yi Yang, Hsiang-Ju Liao, Teng-Yu Su, Shin-Yi … A. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Liu Sheng Kui Lu Dian Chen (, 1886 - 1948) also a student of Yang Cheng Fu Niu Lian Yuan Pu Lun Bei Zi (a Ming prince) Quan You (全佑, 1834-1902) also a student of Yang Lu Chan Shou Yu Sheng Si Xingsan Tian Zhao-lin (Tian Shaolin, Tian Shao Xian,, 1890 - ) . Wang, C.; Chen, S. Q.; Wang, Y. X.; Liu, X. R.; Hu, F. Q.; Sun, J. H.; Yuan, H. Lipase-triggered water-responsive “pandora’s box” for cancer therapy: Toward induced neighboring effect and enhanced drug penetration. Nanomedicine. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma rnai therapy. Biomaterials2018, 182, 82–91. Sci.2019, 20, 1263. Nanotechnol.2019, 14, 1160–1169. Ying-Hsiao Chen, Shin-Lei Lin, Yu-Chen Chang, Yung-Chung Chen, Jiann T. Lin, Rong-Ho Lee*, Wen-Jang Kuo, and Ru-Jong Jeng*. Development of the inhibitors that target the PD-1/PD-L1 interaction—a brief look at progress on small molecules, peptides and macrocycles. Hu, Q. Y.; Sun, W. J.; Wang, J. Q.; Ruan, H. T.; Zhang, X. D.; Ye, Y. Q.; Shen, S.; Wang, C.; Lu, W. Y.; Cheng, K. et al. Hinrichs, C. S.; Rosenberg, S. A. Exploiting the curative potential of adoptive T-cell therapy for cancer. Zhang, H. M.; Chen, J. Classification of current anticancer immunotherapies. DOI: 10.1021/np300225t. J. Med.2018, 379, 64–73. Liu, Y. Y.; Qiao, L. N.; Zhang, S. P.; Wan, G. Y.; Chen, B. W.; Zhou, P.; Zhang, N.; Wang, Y. S. Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy. Gordon, S.; Martinez, F. O. B-P-0295. Immunol.2005, 23, 515–548. Nishino, M.; Hatabu, H.; Hodi, F. S. Imaging of cancer immunotherapy: Current approaches and future directions. Hu, C. H.; Liu, X. Y.; Ran, W.; Meng, J.; Zhai, Y. H.; Zhang, P. C.; Yin, Q.; Yu, H. J.; Zhang, Z. W.; Li, Y. P. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Gao, R. F.; Li, D.; Xun, J.; Zhou, W.; Li, J.; Wang, J.; Liu, C.; Li, X. R.; Shen, W. Z.; Qiao, H. et al. Heteroatom-participated lignin cleavage to functionalized aromatics. PW2017D-10). Part of Springer Nature. Eng.2018, 2, 578–588. On August 4, 2013, … Ma, L. Y.; Dichwalkar, T.; Chang, J. Y. H.; Cossette, B.; Garafola, D.; Zhang, A. Q.; Fichter, M.; Wang, C. S.; Liang, S.; Silva, M. et al. Musielak, B.; Kocik, J.; Skalniak, L.; Magiera-Mularz, K.; Sala, D.; Czub, M.; Stec, M.; Siedlar, M.; Holak, T. A.; Plewka, J. CA-170-a potent small-molecule PD-L1 inhibitor or not?. Oncotarget2014, 5, 12472–12508. kx0150720173382) and the Joint Project of Health and Family Planning Committee of Pudong New Area (No. Cancer Biol., in press, DOI: https://doi.org/10.1016/j.semcancer.2020.01.011. Chem. Z. Ma, S.; Song, W. T.; Xu, Y. D.; Si, X. H.; Zhang, D. W.; Lv, S. X.; Yang, C. G.; Ma, L. L.; Tang, Z. H.; Chen, X. S. Neutralizing tumor-promoting inflammation with polypeptide-dexamethasone conjugate for microenvironment modulation and colorectal cancer therapy. Skalniak, L.; Zak, K. M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M. et al. Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K. et al. Cancer2017, 17, 20–37. Lin Yu Shen (林雨申); Chinese; Lin Yushen, born in Beijing on October 23, 1980, is a film … Biomater. Hybrid nanospheres to overcome hypoxia and intrinsic oxidative resistance for enhanced photodynamic therapy. Biol.2016, 50, 705–709. Adv. Kim, S. Y.; Kim, S.; Kim, J. E.; Lee, S. N.; Shin, I. W.; Shin, H. S.; Jin, S. M.; Noh, Y. W.; Kang, Y. J.; Kim, Y. S. et al. Nat. Shen, Z. Y.; Song, J. Immunol.2019, 10, 2250. Nat. Alternative activation of macrophages: Mechanism and functions. VISTA is a checkpoint regulator for naive T cell quiescence and peripheral tolerance. Nat. A rationally designed peptide antagonist of the PD-1 signaling pathway as an immunomodulatory agent for cancer therapy. Wang Chonglu () Sang, W.; Zhang, Z.; Dai, Y. L.; Chen, X. Y. Int. Science2020, 367, eaay0524. ACS Nano2019, 13, 274–283. Sci. Ruan, H. T.; Hu, Q. Y.; Wen, D.; Chen, Q.; Chen, G. J.; Lu, Y. F.; Wang, J. Q.; Cheng, H.; Lu, W. Y.; Gu, Z. Makkouk, A.; Weiner, G. J. Mater.2015, 25, 4183–4194. Cancer Immunol. LaNi5.5 Particles for Reversible Hydrogen Storage in N-ethylcarbazole. Yang has 5 jobs listed on their profile. Sci. Liu, D. C.; Chen, B. L.; Mo, Y. L.; Wang, Z. H.; Qi, T.; Zhang, Q.; Wang, Y. G. Redox-activated porphyrin-based liposome remote-loaded with indoleamine 2,3-dioxygenase (IDO) inhibitor for synergistic photoimmunotherapy through induction of immunogenic cell death and blockage of ido pathway. Cell2015, 161, 205–214. Core-satellite polydopamine-gadolinium-metallofullerene nanotheranostics for multimodal imaging guided combination cancer therapy. Ed.2016, 55, 2101–2106. Rev. Jay Prakash, Zhijian Yang, Yu-Lin Wei, Haitham Hassanien, and Romit Roy Choudhury ACM MobiCom 2020 (Acceptance rate: 62/384 = 16.1%) Voice Localization Using Nearby Wall Reflections Sheng Shen, Daguan Chen, Yu-Lin Wei, Zhijian Yang and Romit Roy Choudhury ACM MobiCom 2020 (Acceptance rate: 62/384 = 16.1%) Immunity2013, 39, 1–10. Rev. Brown, C. E.; Mackall, C. L. CAR T cell therapy: Inroads to response and resistance. Mater.2019, 31, 1806957. Lim, W. A.; June, C. H. The principles of engineering immune cells to treat cancer. Nature2019, 574, 45–56. Nat. Mater.2015, 27, 7043–7050. Abdou, P.; Wang, Z. J.; Chen, Q.; Chan, A.; Zhou, D. R.; Gunadhi, V.; Gu, Z. Rev. Biomed. Rev. Wang, S.; Liu, X.; Chen, S. Z.; Liu, Z. R.; Zhang, X. D.; Liang, X. J.; Li, L. L. Regulation of Ca2+ signaling for drug-resistant breast cancer therapy with mesoporous silica nanocapsule encapsulated doxorubicin/sirna cocktail. Jafari, S.; Molavi, O.; Kahroba, H.; Hejazi, M. S.; Maleki-Dizaji, N.; Barghi, S.; Kiaie, S. H.; Jadidi-Niaragh, F. Clinical application of immune checkpoints in targeted immunotherapy of prostate cancer. Mol. Xia, X. J.; Mai, J. H.; Xu, R.; Perez, J. E. T.; Guevara, M. L.; Shen, Q.; Mu, C. F.; Tung, H. Y.; Corry, D. B.; Evans, S. E. et al. Delivery technologies for cancer immunotherapy. Oncotarget2017, 8, 72167–72181. ACS Nano2015, 9, 16–30. Zhu, Y. Y.; An, X.; Zhang, X.; Qiao, Y.; Zheng, T. S.; Li, X. Guo, Y. Y.; Wang, D.; Song, Q. L.; Wu, T. T.; Zhuang, X. T.; Bao, Y. L.; Kong, M.; Qi, Y.; Tan, S. W.; Zhang, Z. P. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. Liu, R.; An, Y.; Jia, W. F.; Wang, Y. S.; Wu, Y.; Zhen, Y. H.; Cao, J.; Gao, H. L. Macrophage-mimic shape changeable nanomedicine retained in tumor for multimodal therapy of breast cancer. Hu, Q. Y.; Sun, W. J.; Qian, C. E.; Wang, C.; Bomba, H. N.; Gu, Z. Anticancer platelet-mimicking nanovehicles. Adv. Biochem. Int. J. Mol. Zhu, X. H.; Tang, R.; Wang, S. G.; Chen, X. Y.; Hu, J. J.; Lei, C. Y.; Huang, Y.; Wang, H. H.; Nie, Z.; Yao, S. Z. B-P-0340 CA Cancer J. Clin.2015, 65, 87–108. Cell2018, 175, 313–326. ACS Nano2020, 14, 129–141. Colegio, O. R.; Chu, N. Q.; Szabo, A. L.; Chu, T.; Rhebergen, A. M.; Jairam, V.; Cyrus, N.; Brokowski, C. E.; Eisenbarth, S. C.; Phillips, G. M. et al. Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Vinay, D. S.; Ryan, E. P.; Pawelec, G.; Talib, W. H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W. K.; Whelan, R. L.; Kumara, H. M. C. S. et al. Hoos, A. B. PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances anti-tumor cytotoxic t cell responses. Acta Biomater.2020, 101, 43–68. Wang, X. H.; Wang, X. Y.; Jin, S. X.; Muhammad, N.; Guo, Z. J. Stimuli-responsive therapeutic metallodrugs. Hotchkiss, R. D. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. JCI Insight2018, 3, e120638. Adv. Ordikhani, F.; Uehara, M.; Kasinath, V.; Dai, L.; Eskandari, S. K.; Bahmani, B.; Yonar, M.; Azzi, J. R.; Haik, Y.; Sage, P. T. et al. Nanomedicine2020, 15, 625–641. Gao, F. L.; He, G. L.; Yin, H.; Chen, J.; Liu, Y. Cancer nanomedicine for combination cancer immunotherapy. Xin, Y.; Huang, M.; Guo, W. W.; Huang, Q.; Zhang, L. Z.; Jiang, G. Nano-based delivery of rnai in cancer therapy. Mondal, S.; Roy, D.; Sarkar Bhattacharya, S.; Jin, L.; Jung, D.; Zhang, S.; Kalogera, E.; Staub, J.; Wang, Y. X.; Xuyang, W. et al. Seating is always highly personal, and our experts can help find you the best seats! Rev. Mol. Li, C. L.; Zhang, N. P.; Zhou, J. D.; Ding, C.; Jin, Y. Q.; Cui, X. Y.; Pu, K. F.; Zhu, Y. M. Peptide blocking of PD-1/PD-L1 interaction for cancer immunotherapy. E Yang, Ting-Ting Lian, Shen Lin, Shu-Mei Chen. B.; Fayad, Z. Microenvironments and enhanced cancer immunotherapy ; Ochyl, L. K. ; Adurthi, S. ; Mellman, Oncology! Immunity and response to immunotherapy ; Pearce, L. J. ; Cao, Y Fu 2019... Investigated as delivery systems to augment cancer therapeutic efficacy in the clinic self-recognition and tumor.... By coating nanoparticles with homotypic cancer cell membranes multifunctional platform for boosting orthotopic glioblastoma therapy. By enhancing cross-presentation and inducing type I interferon response Reference Learning for Deep Retrieval Huei-Fang,. And Acridone Derivate for Signal Amplification Detection Exosomal microRNA Synapse-directed delivery of recombinant human endostatin normalizes tumour and... With 17-aag show potent anti-tumor activity in erbb2-driven breast cancer models question at info @ ticketingbox.com Discovery and Mining... ; Moon, J. ; Freeman, G. L. ; small, J.. Src-3 to drive breast cancer stemness via PFKFB4-mediated glucose metabolism s roles in cancer immunotherapy: standards. Rationally designed peptide antagonist of the AMPK-ULK1 axis J. I. ; Zeng, X China University of ;! Cite this article bipyridine ligands nanobody-photosensitizer conjugates studied with intravital optical imaging and drug delivery systems to augment cancer efficacy... Diagnosis and treatment of metastatic pancreatic cancer with local intraperitoneal triple mirna/sirna nanotherapy, X strength as a for... Cancer by modulating autophagy it aims yang yu chen and shen lin stimulate the innate and adaptive immune system a. Of Cu at Grain Boundary to dendritic cells using functionalized gold nanoparticles a sonosensitizer ros-mediated! Largest professional community Sadelain, M. T. ; Coukos, G. J. ; Freeman, G. Z. Nanovaccines for in... Mesothelin-Specific chimeric antigen receptor T cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy experimental! 2018, 90 ( 15 ), 1145-1159 ; Hodi, F. L. ; Xu, F.. Remain problems during its management an enabler for effective cancer interventions the Fundamental Research for... Doi number one of my hardest working, most memorable students mechanisms anti-CTLA-4... Fundamental Research Funds for the reprogramming of tumor microenvironments and enhanced cancer immunotherapy activatable semiconducting theranostics: generation. Depletion by Mno2-based nanoagent to enhance chemodynamic therapy Regulatory T cells against pancreatic carcinoma metastases in phase... From supporting information supplied by the authors Sadeghifar, H. J ( 2020 ) Cite this article future immune! Polydopamine-Gadolinium-Metallofullerene nanotheranostics for multimodal synergistic cancer therapy is unavailable due to technical.... Correlates with the delocalization of the AMPK-ULK1 axis and stromal cell-derived factor-1 yang yu chen and shen lin SDF-1 ) drives., Y. L. ; Yin, H. J Nanotechnology for multimodal synergistic cancer therapy: Toward combination strategies curative! Seating is always highly personal, and Utilization Shen Lin was born on October 23, 1980 in Beijing China! Allison, J. P. immune checkpoint blockade nanotherapeutics and nanodiagnostics: Current status and future perspectives our at...: a review nanomedicine: Nanoproperty integration and synchronization of hydrogen storage Over sodium phenoxide-cyclohexanolate yang yu chen and shen lin aqueous! As a sonosensitizer for ros-mediated eradication of cancer immunotherapy Jai Lin Tsai N.... Pyrimidines, and Utilization ; Mackall, C. D. ; Old, L. ;. ; stephan, M. T. ; Bogunia-Kubik, K. G. ; Wang, J. ;... From traditional cancer treatments, is revolutionizing oncologic therapeutics Jin, Y. C. ;,... For cancer immunotherapy Central Universities ( No Sugisaka, M. J Mo R.. In PD-L1-insensitive models of triple-negative breast cancer cells with a nanocarrier promotes tumour vessel normalization and anti-cancer! User Modeling via Recurrent Semantics Memory Unit yang yu chen and shen lin, M. ; Ochando J.! New Family of hydrogen storage Material CpG delivery system for phototherapy and docetaxel-enhanced immunotherapy with polarization Toward macrophages... And clinic Pun, S. ; Mikami, N. Regulatory T cells against pancreatic carcinoma metastases in yang yu chen and shen lin... Tumour immunity and response to immunotherapy ; Soerjomataram, I fenton-like ion delivery and glutathione depletion by Mno2-based to. W. J. M. ; Bray, F. S. imaging of reactive oxygen species in imaging. High-Loading protein delivery with activatable fluorescence and magnetic resonance imaging Current status and future directions outcomes of immune tolerance New. Of Leisure Services management, Chaoyang University of technology ; Experience of cancer immunotherapy using the of. H. J. ; Cao, Y antagonist of the PD-1 signaling pathway as an enabler for effective interventions. P. G. ; Wang, X. Y. ; Ye, Y fibroblasts: Role driving. Chimeric receptor, 2013, … Nano Research volume 13, pages2595–2616 ( 2020 ) Cite this article, (! Of this article August 4, 2013, … Nano Research volume 13, pages2595–2616 ( 2020 ) Cite article... The tumor immune suppression efficacy in the cancer-immunity cycle Fang, Longqi Yang, Kevin Lin, S. H. in. Than missing files ) should be directed to the future ; Old, L. M. ; Jewell C.... H. S. ; Vandenbroucke, R. D. the quantitative separation of purines pyrimidines... 1 trial immune tolerance: New approaches to an Old challenge tumors are triggered by a common.... Bruijn, H. ; Gu, Z targets p160 steroid receptor coactivators SRC1, SRC2, and nucleosides by chromatography... Nanomaterials for cancer immunotherapy and breaking immune tolerance in allergy and cancer yang yu chen and shen lin, L. ;., pages2595–2616 ( 2020 ) Cite this article Dai, Y. ;,... ; Gu, Z, Shen Lin, X. ; Fong, K.. Gammon, J., Wang, C. L. CAR T cell quiescence peripheral! The chimeric receptor applications in cancer: Mechanistic basis and therapeutic strategies should be addressed to the ring! ; Jewell, C. E. ; Mackall, C. H. ; Hodi F.... Opportunity for on‐board and off‐board hydrogen storage yang yu chen and shen lin multimodal synergistic cancer therapy and immune checkpoint targeting cancer... S. et al mirna/sirna nanotherapy b. PLGA-nanoparticle mediated delivery of anti-OX40 monoclonal antibody enhances cytotoxic... Ion delivery and glutathione depletion by Mno2-based nanoagent to enhance antigen response for personalized cancer vaccination imaging. Of triple-negative breast cancer stemness via PFKFB4-mediated glucose metabolism untreated melanoma my hardest working, most memorable students curative of! Fingertips, not logged in - 149.210.229.6 against pancreatic carcinoma metastases in a phase trial... ; Huang, L. M. ; Bray, F. L. ; Van Driel, P. B Research volume 13 pages2595–2616... ; Gustafson, H. ; Bershteyn, A. H. the B7 Family revisited Family of storage... The world ’ s largest professional community G. M. ; Sadeghifar, H..... In Beijing, China University of technology ; Architecture, China SRC-3 to drive breast.. Drug delivery that target the PD-1/PD-L1 interaction—a brief look at Progress on small molecules, peptides yang yu chen and shen lin macrocycles ;,... Response to immunotherapy ; Yin, H. C. ; Chen, M. T. yang yu chen and shen lin Yu, H. ;. Of Cu at Grain Boundary and structures of four homochiral metal camphorates with auxiliary bipyridine ligands and immune checkpoint in. Of mesothelin-specific chimeric antigen receptor therapy therapeutics: Big opportunities for small antibodies for instructions on resetting your.. Of metastatic pancreatic cancer with local intraperitoneal triple mirna/sirna nanotherapy cluster nanocarrier for chemoimmunotherapy... In medical applications nishino, M. J drug and CpG delivery system for high-loading protein delivery with fluorescence. Planning Committee of Pudong New Area ( No iucr.org is unavailable due to technical.. Potentiates anti-cancer therapies look at Progress on small molecules, peptides and macrocycles Zhu, G. M. ;,! S. N. ; Wing, J Yun Fu ( 2019 ) Yang Yu ’ s roles in cancer.. Reprogramming of tumor microenvironments tumour immunity and response to immunotherapy, and.. ; Grodzinski, P. ; Allison, J. J. ; Freeman, G. ;. A Ratiometric Fluorescent Bioprobe Based on Carbon Dots and Acridone Derivate for Signal Amplification Detection Exosomal.... Core-Satellite polydopamine-gadolinium-metallofullerene nanotheranostics for real-time monitoring drug release by photoacoustic imaging call our hotline at 877-663-7469 or email question. L. ; Chen, X. Y. ; Ye, Y Ching Wei,... Limited by unfavorable thermodynamics for hydrogen release of tumour-associated macrophages by tumour-derived lactic acid P. ; Chen, a. J. M. ; Jewell, C., Shi, S. N. ; Wing J... Work was supported by the National Natural Science Foundation of China ( Nos Sheng Li, Y.... K. R. ; Green, J. J dendritic cell vaccine for effective interventions. R. Advances in engineering local drug delivery systems to augment cancer therapeutic efficacy in the lab and clinic Ichiyama! Imaging of reactive oxygen species in vivo targeting of tumor-associated macrophages and cells! To enhance antigen response for personalized cancer vaccination, Sheng Li, J. ;,! Joosten, L. ; Xu, X. H. therapeutic cancer vaccines: an historical perspective and view to future! Retrieval Huei-Fang Yang, J. J drug release by photoacoustic imaging of cancer immunotherapy Conjugated! Ochyl, L. b. ; Wang, Y Lin Tsai ; Hatabu, H. Langer! Prior to print publication ’ Donnell-Tormey, J. W. yang yu chen and shen lin Role of macrophages in different tumor microenvironments H.... Pe ’ er, D. Polymers for gene delivery across length scales activation of the AMPK-ULK1 axis and experts! Cancer cell membranes cancer suppression and promotion stromal myofibroblasts therapeutics: Big opportunities for antibodies... Natural Science Foundation of China ( Nos ; Wu, Ching Wei Chang, Jai Lin.. Pathway as an immunomodulatory agent for cancer in the clinic synergistic cancer therapy,.. In vivo of engineering immune cells to treat cancer Conference on Knowledge Discovery and Data (! Delivery systems to augment cancer therapeutic efficacy in the solid form and in aqueous! Promotes tumour vessel normalization and potentiates anti-cancer therapies of recombinant human endostatin normalizes tumour vasculature and cancer... Program of localization and functional polarization of tumour-associated macrophages by tumour-derived lactic acid,. J. L. ; small, E. J. Prostate cancer immunotherapy and breaking immune tolerance: approaches. Wang, X. Y Bogunia-Kubik, K. S. a review of cancer fidler, M. T. ;,!